Proposal Form For Addition And Revision Of Courses

1. Proposing College / School: Samuel Ginn College of Engineering
 Department: Aerospace Engineering

2. Course Prefix and Number: AERO 5410
 3. Effective Term: Fall 2015

4. Course Title: Aeroacoustics
 Abbreviated Title: Aeroacoustics

5. Requested Action:
 - Add a Course
 - Proposed Course Number:
 - Type of Revision:

6. Course Credit:
<table>
<thead>
<tr>
<th>Contact/Group Hours</th>
<th>Scheduled Type (e.g.: Lab, Lecture, Practicum, Directed Study)</th>
<th>Weekly or Per Term?</th>
<th>Credit Hours</th>
<th>Anticipated Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Hours</td>
<td>Lecture</td>
<td>3</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>(Repeatability)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 Total Credit Hours: 3

7. Grading Type:
 - Regular (ABCDF)
 - Satisfactory/Unsatisfactory (S/U)
 - Audit

8. Prerequisites/Corequisites:
 Use "P:" to indicate a prerequisite, "C:" to indicate a corequisite, and "P/C:" to indicate a prerequisite with concurrency.
 P AERO 3120 or departmental approval

9. Restrictions: List specific restriction in space above.
 - College
 - Major
 - Standing
 - Degree

10. Course Description:
 Fundamental concepts in acoustics: decibel scales, sound propagation and measurement, plane and spherical waves, room acoustics, transmission and reflection, reverberant fields and noise assessment.

11. May Count Either:
 AERO 5410 or AERO 6410 (Indicate if this particular course cannot be counted for credit in addition to another)

12. Affected Program(s):
 (Respond "N/A" if not included in any program; attach memorandum if more space is required)

13. Overlapping or Duplication of Other Units' Offerings:
 (If course is included in any other degree program, is used as an elective frequently by other unit(s), or is in an area similar to that covered by another college/school, attach correspondence with relevant unit)
 - Applicable
 - Not Applicable

Date: 08/01/2014
14. Justification:

An aeroacoustical analysis is an increasing important phase of the design process for many ground-based vehicles and flight vehicles. Safe and acceptable designs for automobiles, aircraft, launch vehicles, etc., require that the aeroacoustical environment surrounding these vehicles be defined and examined as part of the design process. Students need to be introduced to the basics of aeroacoustics as part of their engineering education.

(Include a concise, yet adequate rationale for the addition/revision of the course, citing accreditation, assessments (faculty, graduate, and/or external) where applicable)

15. Resources:

No additional resources are required.

(Indicate whether existing resources such as library materials, classroom/laboratory space, and faculty appointments are adequate to support the proposed addition/revision; if additional resources are required, indicate how such needs will be met, referencing the appropriate level of authorization -- i.e.: Dean -- where necessary; if no additional resources or shifting of resources will be necessary, respond "Not Applicable")

16. Student Learning Outcomes:

1. an understanding of the fundamentals of the theory and measurement of acoustics and noise control
2. an understanding of the physical principles associated the production of sound from vibrations and waves
3. an understanding of acoustical devices
4. an understanding of the behavior of sound waves in enclosed spaces
5. an understanding of interaction between acoustical waves and structural vibration.

The first four learning outcomes pertain to both undergraduate and graduate students. The last learning outcome is one where the undergraduates would be expected to demonstrate understanding of very simple acoustic-structure interactions. The graduate students are expected to explore a much more complicated acoustic-structure interaction environment for their Graduate Project (see grading info)

(State in measurable terms (reflective of course level) what students should be able to do when they have completed this course)

17. Course Content Outline:

Textbook:
Instructor notes and slides.

References:

Topics: One dimensional wave equation: modal solution (separation of variables) and traveling wave solutions (D'Alembert's solution). Concepts of work, power, energy density and intensity for harmonic plane and spherical waves; acoustical impedance in near and far fields. Introduction to aeroacoustics: monopoles, dipoles, quadrupoles, subsonic and supersonic flows, pressure, velocity and intensity fields; Lighthill's theory. Frequency spectra: periodicity, Fourier series, Fourier integrals and the discrete Fourier transform. Acoustics of enclosures: absorption, reflection and transmission of sound; sound levels in rooms, reverberation rooms and anechoic chambers.

Lecture Subject (45 lectures based on a MWF format)
1. Introduction
2. Math - Complex numbers
3. Wave equation
4. Plane waves
5. Plane waves
18. Assignments / Projects:

- Homework: 40% contributes to all learning objectives
- Exam I: 15% contributes to learning objectives #1 thru #4
- Exam II: 15% contributes to learning objectives #1 thru #4
- Undergraduate students – Final Exam: 30% - contributes to all learning objectives
- Graduate students – Final Project: 30% - contributes to all learning objectives, but with special emphasis on Learning Outcome #5
- The Final Project for the graduate students will involve the solution of a problem related to the individual student's area of interest within engineering using the methods developed in the course. This Final Project for the graduate students will replace an in-class final exam. The undergraduate students will not complete a project, but will have to complete an in-class final exam.

(List all quizzes, projects, reports, activities and other components of the course grade -- including a brief description of each assignment that clarifies its contribution to the course's learning objectives)

19. Rubric and Grading Scale:

- Assessment Contribution to Course Grade
- Homework: 40%

(Provide a comprehensive, week-by-week breakdown of course content, including assignment due dates)
Exams (20%): 30%
Final Exam/Final Project: 30%
Course Grading Scale:
90-100% - A
80-89% - B
70-79% - C
60-69% - D
Below 60% - F

(List all components of the course grade -- including attendance and/or participation if relevant -- with point totals for each; indicate point totals and ranges or percentages for grading scale; for S/U grading, detail performance expectations for a passing grade)

20. Justification for Graduate Credit: The Final Project is a requirement of all graduate students enrolled in the course, but is not a requirement for the undergraduate students. The Final Project will require the graduate students to select a problem for analysis using the methods discussed in the course and some additional techniques that are found in the current literature. Consequently, the Final Project for the graduate students will require a higher degree of critical thinking than would be expected of the undergraduate students.

(Include a brief statement explaining how the course meets graduate educational standards (i.e.: rigorous standards for evaluation, development of critical thinking and analytical skills, etc.))

(Included below are standard statements regarding course policies. If necessary, a statement may be altered to reflect the academic policies of individual faculty members and/or the academic unit or department, provided that there is no conflict with the Student Policy eHandbook, Faculty Handbook, or any existing university policy.)

POLICY STATEMENTS

Attendance: Although attendance is not required, students are expected to attend all classes, and will be held responsible for any content covered in the event of an absence.

Excused Absences: Students are granted excused absences from class for the following reasons: illness of the student or serious illness of a member of the student's immediate family, the death of a member of the student's immediate family, trips for student organizations sponsored by an academic unit, trips for university classes, trips for participation in intercollegiate athletic events, subpoena for a court appearance, and religious holidays. Students who wish to have an excused absence from class for any other reason must contact the instructor in advance of the absence to request permission. The instructor will weigh the merits of the request and render a decision. When feasible, the student must notify the instructor prior to the occurrence of any excused absences, but in no case shall such notification occur more than one week after the absence. Appropriate documentation for all excused absences is required. Please consult the Student Policy eHandbook for more information on excused absences.

Make-Up Policy: Arrangement to make up a missed major examination (e.g., hour exam, mid-term exam) due to properly authorized excused absences must be initiated by the student within one week of the end of the period of the excused absence(s). Except in unusual circumstances, such as the continued absence of the student or the advent of university holidays, a make-up exam will take place within two weeks of the date that the student initiates arrangements for it. Except in extraordinary circumstances, no make-up exams will be arranged during the last three days before the final exam period begins.

Academic Honesty Policy: All portions of the Auburn University student academic honesty code (Title XII) found in the Student Policy eHandbook will apply to university courses. All academic honesty violations or alleged violations of the SGA Code of Laws will be reported to the Office of the Provost, which will then refer the case to the Academic Honesty Committee.

Disability Accommodations: Students who need accommodations are asked to electronically submit their approved accommodations through AU Access and to arrange a meeting during office hours the first week of classes, or as soon as possible if accommodations are needed immediately. If you have a conflict with my office hours, an alternate time can be arranged. To set up this meeting, please contact me by e-mail. If you have not established accommodations through the Office of Accessibility, but need accommodations, make an appointment with the Office of Accessibility, 1228 Haley Center, 844-6998 (V/TTY).